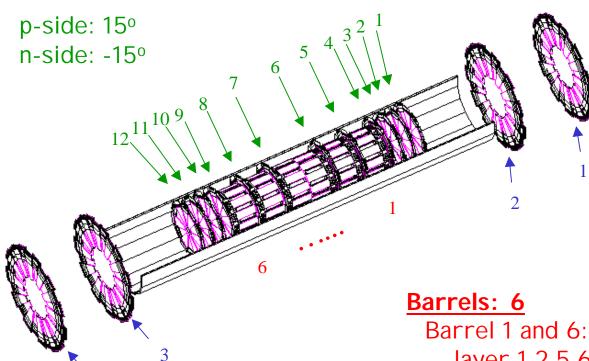
The State of the

DØ Silicon Tracker

DØ Collaboration Meeting January 14, 2000


> Marcel Demarteau Fermilab

Outline

- DØ Silicon Microstrip Tracker
- Production Line of the silicon detector
- Production Status
- Testing Status
- Silicon Read Out
- **□** Fallback
- Conclusion

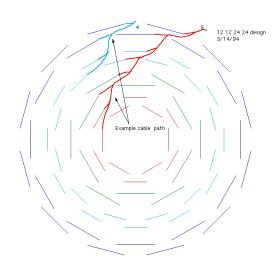
DØ Silicon Microstrip Tracker

F Disks: 12

H Disks: 4

p-side: ±7.5° (SS)

	Barrels F-Disks H-Disks		
Channels	387120	258048	147456
Modules	432	144	96
Inner R	2.7 cm	2.6 cm	9.5 cm
Outer R	9.4 cm	10.5 cm	26 cm

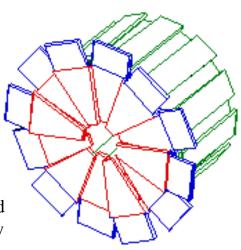

Barrel 1 and 6: layer 1,2,5,6: p-side: 0° (SS)

Barrels 2, ... 5 layer 1,2,5,6: p-side: 0° n-side: 90° layer 3,4,7,8 p-side: 0° n-side: 2°

DØ Silicon Microstrip Tracker

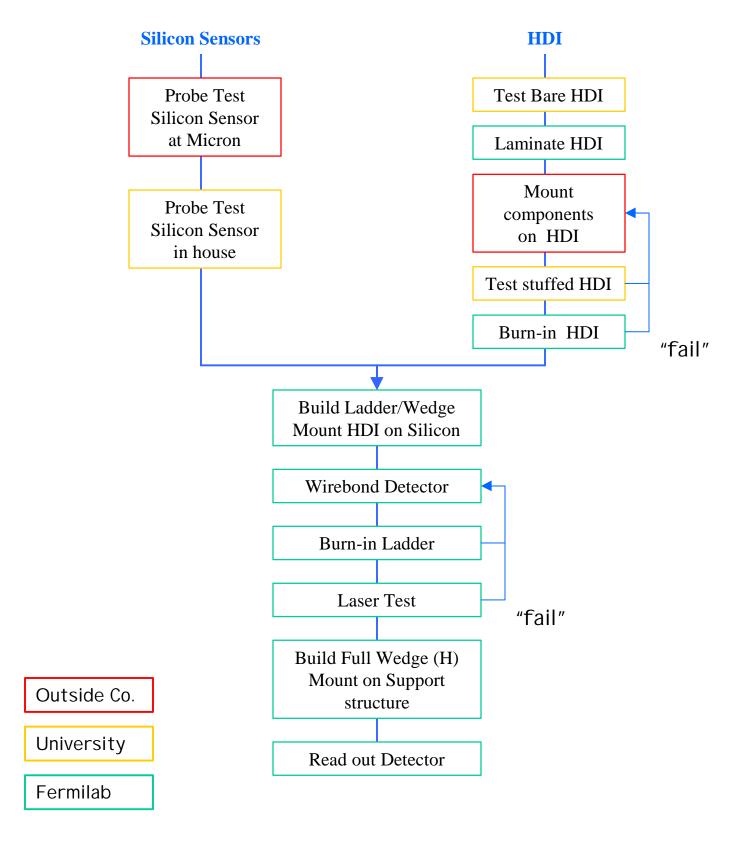
■ 5 different detector types

- Barrel:
 - » 72 Single Sided ladders, axial (3-chip) (Outer Barrels only)
 - » 144 Double Sided, axial / 90⁰ (6-chip)
 - » 216 Double Sided, axial / 2⁰ (9-chip)



R-z view, 8 layers cable routing

- Disks:
 - » 144 Double Sided F disks


(6+8 chip)

» 96x2 Single Sided, back-to-back H disks (6 chip)

View of F disk mounted on Barrel/disk assembly

Production line of Silicon Detector

Silicon Sensors

Barrel

- Axial detectors (3-chip):
 - Need to order 20 more sensors \$14k
 - No delivery problems
- 90° detectors (6-chip):
 - First batch of sensors had defects (p-stop touches n+ implant); each device visually scanned
 - currently ~60 sensors in hand (144 needed) but problems with noise
 - Micron delivery remains worrisome (~12/month)
 - Need ~10 sensors/week to complete detector
 - Huge (~600) number of sensors in production line, but Micron staff is stretched thin.
 - » We appealed for help on Dec 9, 99
 - » Our Czech collaborators offered to station on average 1.5 people at Micron to help with testing devices on site for 6 months
 - » On Jan 10, 00 our Czech collaborator at Micron

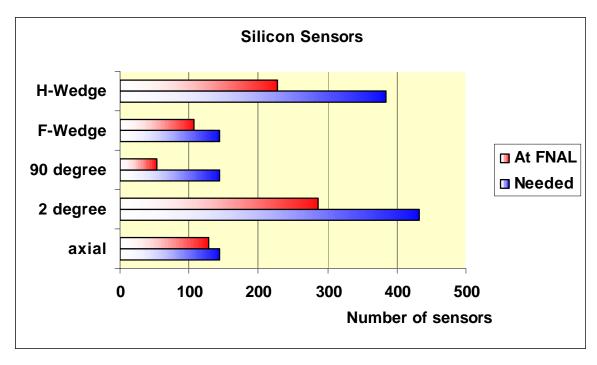
Thank you!!

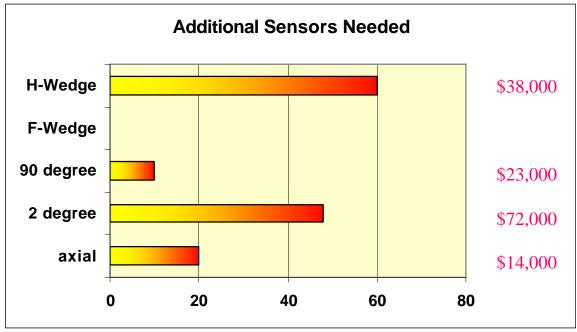
- production will be paced by Micron delivery
- production schedules may force us to accept lower grade devices

□ 2º detectors (9-chip):

- sensor production proceeding well
- Full delivery of order anticipated in April
- Need to order 48 additional sensors \$72k

Disks

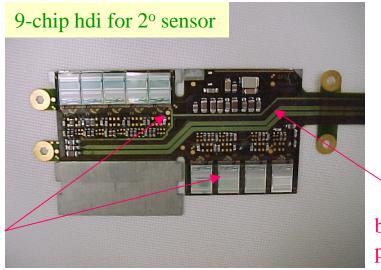

□ F Wedges:


- Proceeding okay at yield of 50-60% at Micron
- Currently 43 wafers in production, 25 needed
- Completion of order for 125 detectors expected by March
- First of order for 75 sensors from Eurisys received
 - » larger bias resistance than specified (add SiO₂ layer)
 - » lower breakdown voltage (60-80V) (change pimplant concentration)
- Timely delivery is anticipated

H Wedges:

 due to larger than expected use of devices for prototyping 60 additional sensors need to be reordered to complete full H disk

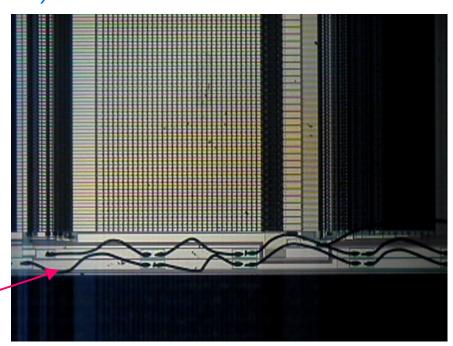
Summary of Sensor Status



 All sensors are in production line. No delay in module production anticipated due to purchase of additional sensors, except for 90° sensors.

High Density Interconnect (HDI)

- ☐ Flexible Kapton/Cu circuit
- Laminated to Be substrate and glued to Si sensor
- Provides read out of Silicon
- Connects Si to SVX chip and SVX chip to flex circuit trough wirebonds
- connects to low mass cable which carries signal out of the detector

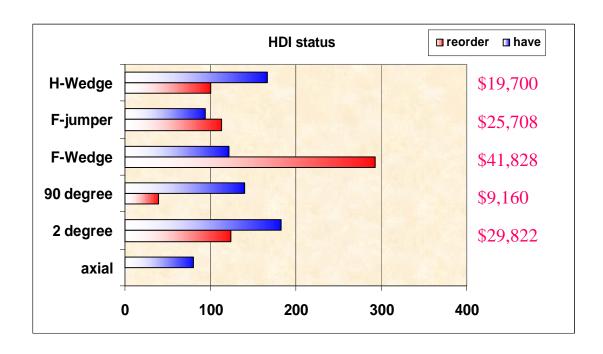

SVX II E chips

bus control and power traces

- hdi's obtained from a variety of vendors (Dyconex, Speedy, Compunetics)
- Tested at CSUF and laminated at Fermilab
- ☐ F Wedge hdi especially intricate device
 - 2 hdi's glued back to back
 - additional jumper (pitch adapter) for 6 chip side (n-side) from different vendor (Max Levy)

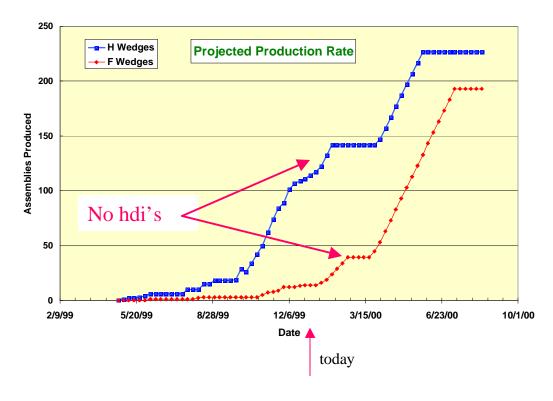
Component Mounting of HDI

- Surface mount and chip bonding done at Promex (CA)
- Multitude of problems
 - weak wirebonds, pull strength 2 grams (7 nominal)
 - wirebonds don't stick
 - hdi's rejected by company
 - poor quality of work performed
 - » poor wirebonds
 - » no dye attach
 - » chips don't download
 - » shipping disasters
 - **–**
 - Recently lost 14 F wedge hdi's
- Qualifying alternate vendor, Silitronics (Connor-Winfield)


Poor wirebonds

hdi yields

- ☐ The Si group tries to provide oversight at the companies while hdi's are being stuffed, but ...
- overall yield fluctuates: 60-90%


	hdi probing	lamination	stuffing	overall
9-chip	0.95	0.97	0.80	0.74
6-chip	0.93	0.95	0.85	0.75
F-disk	1.00	0.90	0.80	0.72
H-disk	0.90	1.00	0.78	0.70

■ Because of the low yields, additional hdi's will have to be reordered to complete the detector

Implications of additional hdi purchase

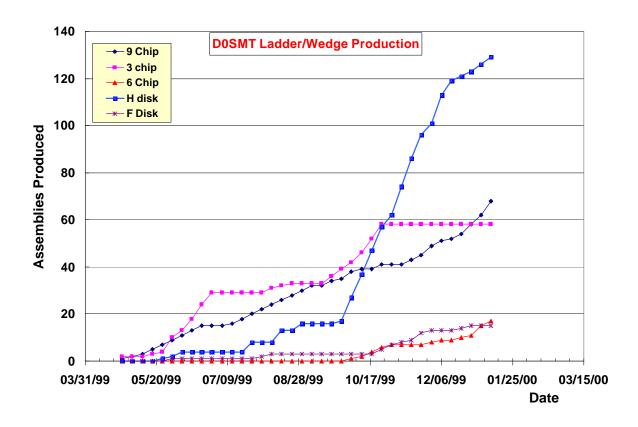
- Significant strain on budget
- Significant impact on production schedule
 - F wedge production
 - » F wedge production projected to be halted for one month in March due to non availability of F wedge hdi's
 - H Wedge production
 - » H wedge production projected to be halted for one month in February due to non availability of H wedge hdi's (but not a problem since effort is diverted into building of full wedges)

Significant impact on availability of hdi components

SVXII E Chips

- Main component mounted on hdi is SVX chip
- Manufactured by UTMC, no longer in business
- □ LBL will deliver 4348 svx chips from last batch
- Additional 39 wafers banked with 148 chps/wafer
- With yield of 60% gives 3450 additional chips
- ☐ Fiber tracker needs 1000 chips
- Total of 6800 chips available for remaining hdi's

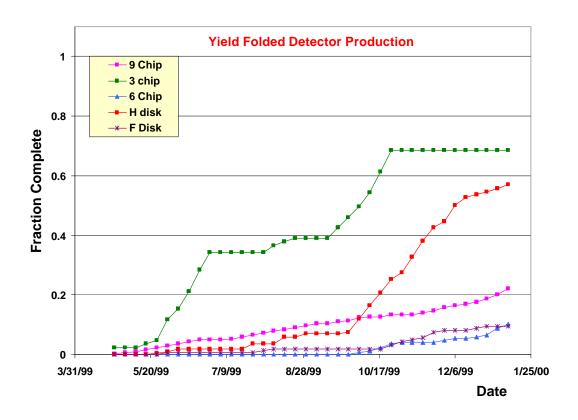
chips needed to complete Si


	for hdi's	for hdi's for hdi's	
	at hand	to reorder	total
3-chip	60	0	60
6-chip	240	240	480
9-chip	720	1116	1836
F-disk	700	3000	3700
H-disk	120	600	720
Total	1840	4956	6796

- Note, these numbers have a large margin of error
- Conclusion: we are on the hairy edge.
- As preventive measure, chips will have to be recovered from broken hdi's; has not been tried to see if it can be done at all.

Ladder and Wedge Production

- Axial detectors (3-chip):
 - 58 ladders built to date, 72 needed
 - Production halted:
 - » effort diverted to 2° detectors
 - » no hdi's available
 - Can complete full complement of detectors in 3 weeks
- □ 2° detectors (9-chip):
 - Production lagged due to qualifying of fixtures
 - Fourth and last fixture should be qualified this week
 - Eliminated one glue cycle from production
 - Currently building 2 ladders/day which can go up to 4 ladders/day
- 90° detectors (6-chip):
 - One fixture qualified with production of 1 ladder/day
 - Second fixture being qualified and two additional on order
 - A second production line in Lab A has been set up with one CMM, to be extended to two CMM's
 - Production will be limited due to:
 - » Micron sensor delivery, built ladders when sensors sent
 - » Inspecting, probing and testing of sensors
 - » Schedule may impose acceptance of lower grade devices
- **□** F Wedges (14-chip):
 - Limited by availability of hdi's
 - Current rate 1/day, go to 2/day
- ☐ H Wedges (6-chip):
 - In steady production, 2/day


Production Status

	9 Chip	3 chip	6 Chip	H disk	F Disk
Produced	68	58	17	129	15
Needed	216	72	144	192	144
To go	202	27	152	97	145
Yield	0.80	0.85	0.85	0.85	0.90

Note: In above graph, yield not included.

Production Status, yield folded

Assumed Yields:

9-chip: 80%

- 3-chip: 85%

- 6-chip: 85%

- H-wedge: 85%

- F-wedge: 90%

Additional orders

Mentioned we need additional sensors and hdi's at a total cost of ~\$300,000

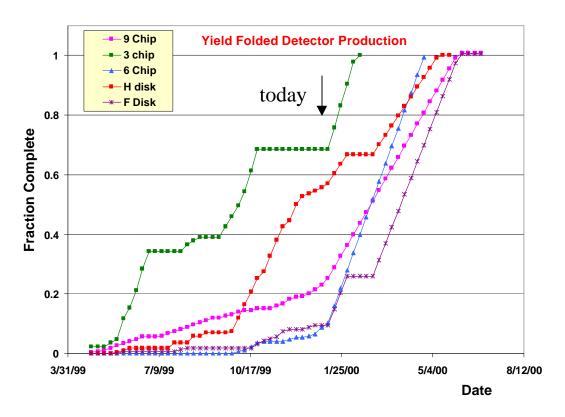
Where do we stand if the additional parts are not purchased?

- 4 barrels worth of 2° detectors
- 3 barrels worth of 90° detectors
- 3.5 F disks
- 3.5 H disks

■ But, assume the purchases do get approved, what does the production rate have to be?

Projected Production Rate

Extrapolate to Milestones:


- 2/11/00 3-chip ladder production complete

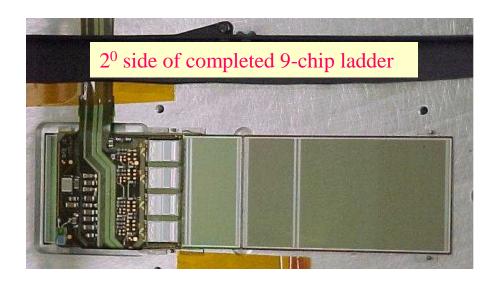
4/27/00 6-chip ladder production complete

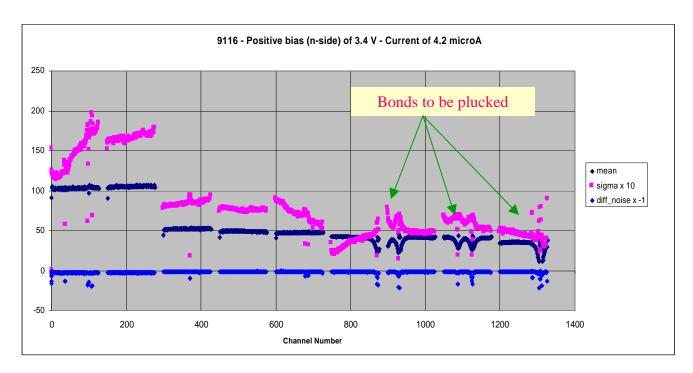
6/22/00 9-chip ladder production complete

- 6/7/00 F wedge production complete

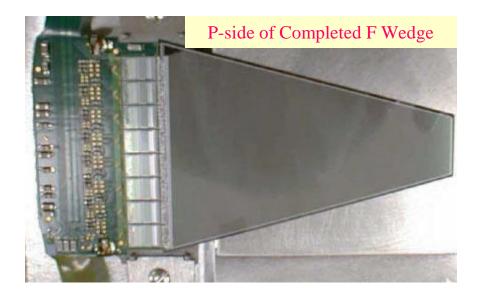
- 5/14/00 H half wedge production complete

	Yield		Production Rate	
_	9-chip:	80%	10/week	
_	3-chip:	85%	6.2/week	
_	6-chip:	85%	10.2/week	
_	H-wedge:	85%	7.3/week	
_	F-wedge:	90%	8.8/week	
_	Total:		42.5/week	


Production Summary

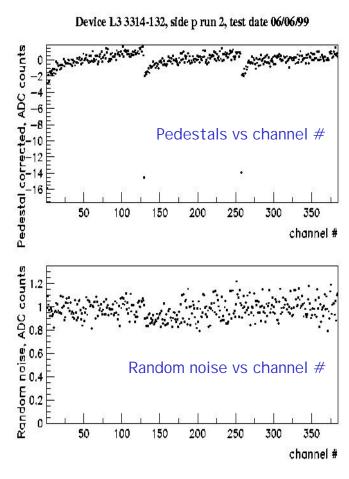

- Production effort needed is enormous but, I believe, feasible
 - Micron issues addressed
 - » 2 people permanently at Micron for duration
 - » 90 degree sensors remain very critical
 - Can increase 9-chip ladder production to 20/week
 - Set up second production line in Lab A for 6chip ladder production. Could go to ~20/week
 - Addressed as is reasonably possible stuffing of hdi's
 - Created Engineering Physicist Opening to help with ladder production and engineering; offer out
 - Trying to recruit additional person
 - Added new fast wirebonder (8090)
 - Added 3 technicians to production
 - Added 2 new technicians for wirebonding

_	•••	•••	•••	•
_				


After the detectors have been built

- Detector debugging
- Detector repair
- Detector burn in
- Laser Test
- Read out

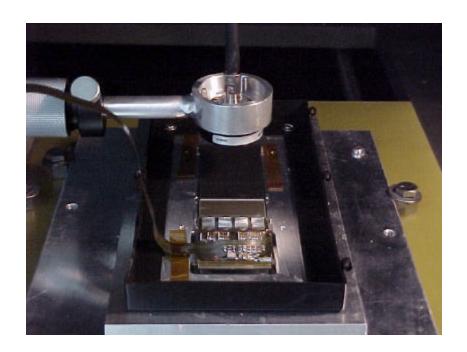
Testing and Repair

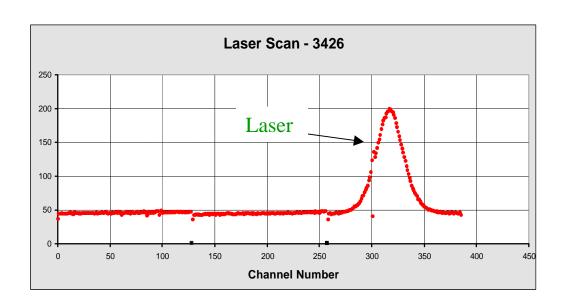

Each F Wedge has more than 2500 wirebonds

- Debugging and repair is iterative process
- Pluck bonds corresponding to noisy strips
- Re-evaluate detector
- Very time consuming; problem devices can easily take >1 day to debug
- All devices have to be tested and debugged
- Serious shortage of manpower; need dedicated crew of people

Burn-in

- Detectors biased, cooled
- Measure pedestal, gain, noise and sparse readout
- Done very effectively by shifters





- 40 detectors per week need to be burned in
- Relevant data needs to be stored in database
 - pedestal
 - noise
 - gain
 - dead channels

Laser Test

- Detectors biased
- Exposed to narrow laser beam
- 40 detectors per week

- Measure depletion voltage
- leakage currents
- dead channels
- □ store information

- Started this week with shifters
- ☐ Can be very effective

Infrastructure

- Current Test stands: 7
 - two test stands for burn in (PC3, PC6)
 - two test stands for laser test (PC2, PC7)
 - one debug (Lab D), one repair (semi), one multipurpose test stand
- Future Test stands:
 - one additional burn-in test stand
 - one additional debug test stand (Lab D)
 - one additional small scale full read out system

All infrastructure is in place, but test stands need to be manned

Remember:

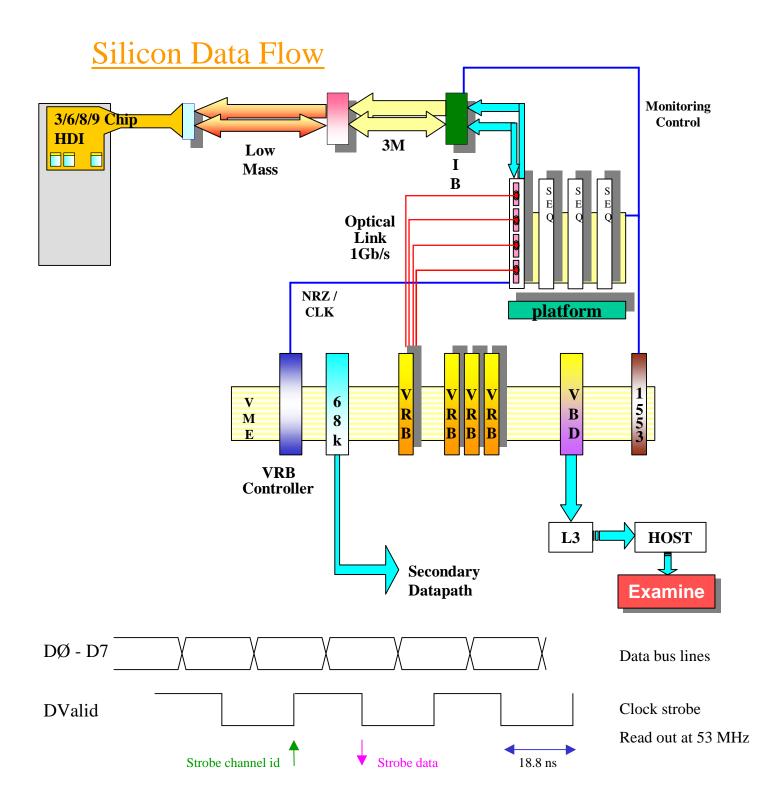
- 40 detectors produced per week
- need to be tested / debugged /repaired Arduous process!!
- Detector burn-in
- Detector laser test
- Analyze and evaluate data
- Store information

The silicon facility has to become a production line. To pull this off, ~10 additional dedicated people are needed, 2 per subdetector type, with staggered hours. Technician help is available >12 hrs per day.

Silicon Read Out

 Complete read out system in final read out configuration installed in clean room in Lab C

■ Goals:


- Ensure data integrity at the level of 10^{14} 10^{15} , i.e allow for loss of 1 bit in 10^{14} 10^{15} bits transferred (10^{13} error rate = 1 non-fatal error every 30 minutes)
- Provide adequate operating margin for device

–

Mode of operation: checksum mode in L3 node:

- SVX chips downloaded to read out set data value
- All channels read out; data constant
- Calculate checksum (sum of all bits) in VBD
- Data transferred to L3 node; checksum compared
- If checksum different: read in and analyze event

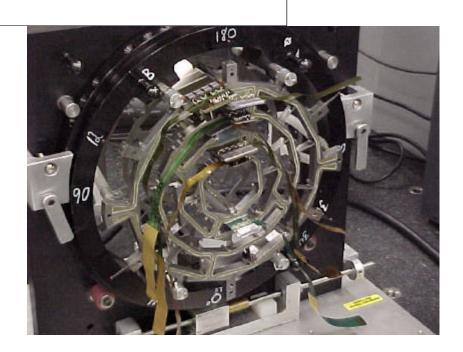
DØ: 1M channel readout system @ 5% occupancy at 1kHz trigger rate: 10¹⁰ bits/s or the equivalent of 312 MHz 32 bit processing. At 10¹⁵: 1 error/day

Intel: Pentium Processor, 400 MHz, 32 bit. Most simple instruction (move) takes ~ 4 clock cycles; 100 MHz equivalent.

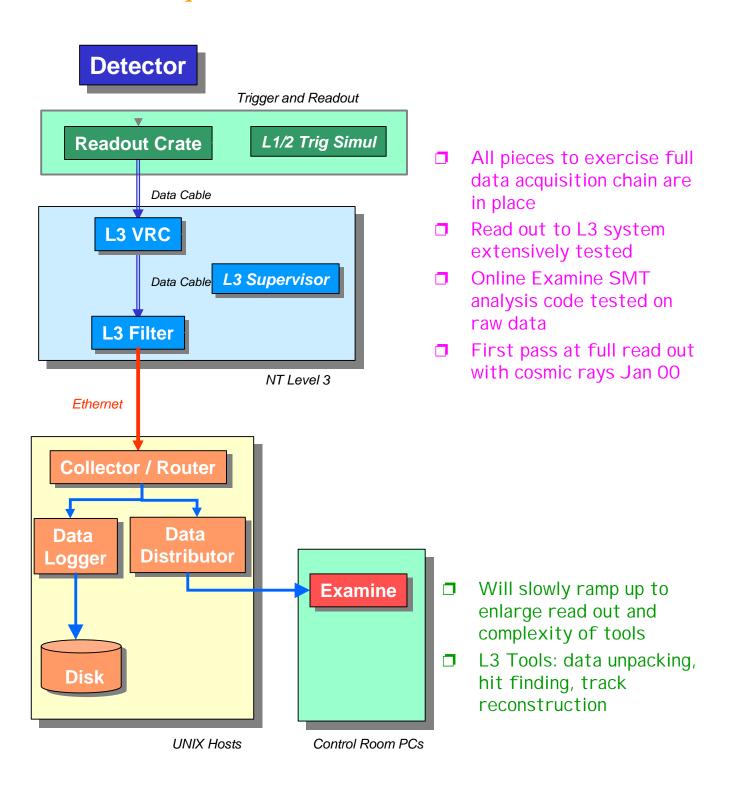
First Step to Barrel Assembly and Read Out

- Currently available 6 low mass cables and able to read out (though with persistent bottom neighbor problem)
- Will move to 6+6 ladder setup in spare Be support structure and exercise full read out system, DAQ, L3 and on/offline software, controls and monitoring
- First pass at cosmics end of January

Title:
C:\Silicon\Cables\10%test2.eps
Creator:
AutoCAD PSOUT
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to


other types of printers.

Array of 4 scintillator counters form external trigger


Momentum analyzing steel, $p_T^{\mu} > 2 \text{ GeV/c}$

Data Rate ~ 1 cosmic/min

Ladder installation in progress

Data Acquisition

Barrel Assembly and Module Installation

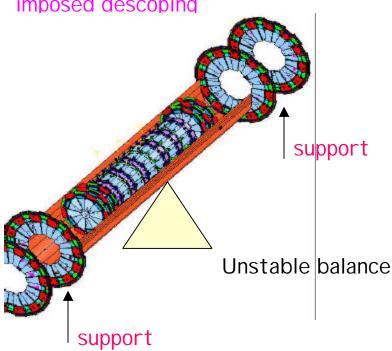
Ladder Installation being exercised

Full H Wedge construction and H wedge mounting

exercised

- Work on Carbon fiber support cylinder underway
- Work on barrel insertion fixture started
- Cabling and hookup studied
- Dry gas enclosure
- H disk shroud
- A lot of work remaining

Fallback


- The laboratory seems adamant in keeping the March 1, 2001 roll in date
- Moreover, the financial situation is bleak
- The experiments were asked to present fallback plans in case they cannot meet the schedule
- Can silicon meet the schedule?
 - ✓ The Si group has been and still is very aggressive in getting the resources needed
 - √ (Most of) the infrastructure is in place
 - ✓ Production schedule is aggressive but can be met (barring sensor delivery problems)
 - * The Si group consists of a core of very gifted, dedicated and loyal people who have given and continue to give more than 100%
 - * That core group, however, is stretched too thin
 - Si has a group of conscientious shifters who prove invaluable
 - If a group of ~10 dedicated people, full time, for a period of 10 months joins to help in the testing and debugging of detectors and
 - If additional parts can be purchased
 - We can have a "soft landing"

Conclusion

- "soft landing":
 - » keep original design
 - » leave "empty slots"
 - » accept lower grade detectors
 - »

Descoping:

- » non purchase of parts is default descoping
- » not shifting priorities is collaboration selfimposed descoping

Note: This is not a plea for help. The problem is staring at us. If the Silicon detector does not get the support, it can (will) fall and could fall hard